Published on Career Center on
Source URL:

HKU chemist with a cause

Published on
Friday, June 24, 2011
Written by
John Cremer [1]

It may sound like science fiction, but Vivian Yam Wing-wah has set her sights on making it scientific fact. The chair professor of chemistry at the University of Hong Kong (HKU) and her research team are creating new molecules, improving where necessary on what nature has to offer, and achieving breakthroughs with the potential to fundamentally change whole industries.

In essence, Yam's work centres on developing and testing new photoactive materials. It entails combining components - metal atoms and organic molecules - to discover new properties that absorb or emit light more efficiently.

The larger purpose is to generate renewable energy by capturing more of the spectrum than today's silicon crystal solar cells can, and to create powerful, cost-saving sources of electric light for general use.

"I want to develop materials where you have high-performance properties and can control functions by manipulation of molecular design," Yam says.

"With very robust molecules, it will be possible to do solar energy harvesting and have very bright light emitting diodes (LEDs). You could print such solar cells on flexible substrates and [manufacture] them relatively easily," she adds.

Giving immediacy to the work is the fact that lighting now accounts for roughly 20 per cent of total power consumption around the world. The development of commercially viable organic materials will therefore have a major impact on carbon emissions and the whole energy debate.

Aspects of the research have led Yam to look at chemical processes involving light, such as photosynthesis in plants and natural phosphorescence. Transforming light into energy and vice versa has taken place for perhaps billions of years. The challenge, though, is to create molecules that perform similar functions and which, in known conditions, assemble themselves in the required structures.

"In the natural world, it is done by biosynthesis. But we can learn from nature and create derivatives in the laboratory with modified properties which may perform better. For me, that is the beauty of chemistry and what makes it a very exciting science."

This interest and sense of wonder was first inspired by seeing a rainbow and, as a youngster, wanting to understand how and why, Yam recalls.

Finding answers to today's questions involves a 20-strong research team and striking a balance between pushing for results and having the time to sit back and reflect.

"A bit of pressure is no bad thing," Yam says. "It pushes you forward at a faster pace, but you do need some freedom to think. In research, there must be guiding principles, but you can't expect everything to go as planned. A lot comes down to serendipity."

In this respect, she emphasises the importance of chemical intuition. It stems from knowledge and experience accumulated over the years and, essentially, allows researchers to sense when they are on the right track.

Sometimes, a breakthrough results from methodical steps completed in the lab. At other times, it is literally a eureka moment striking as a flash of inspiration in the middle of the night.

"If you are really devoted and dedicated to your project, it is always on your mind," Yam says. "A new idea can just pop up or you may read something that stimulates a different way of thinking."

Teaching duties, seniority and an international reputation mean, of course, that time for research is necessarily limited. Yam accepts that as the dilemma all academics must face, but has no complaints about the range of responsibilities.

"I think you can't be selfish and just sit in the lab. You have to contribute to your department, university, profession and peers. Otherwise, the system would simply fall apart." 


For more great career-related articles and to find your next dream job, please visit